Imaging vibrating vocal folds with a high speed 1050 nm swept source OCT and ODT
نویسندگان
چکیده
Vocal fold vibration is vital in voice production and the correct pitch of speech. We have developed a high speed functional optical coherence tomography (OCT) system with a center wavelength of 1050 nm and an imaging speed of 100,000 A-lines per second. We imaged the vibration of an ex-vivo swine vocal fold. At an imaging speed of 100 frames per second, we demonstrated high quality vocal fold images during vibration. Functional information, such as vibration frequency and vibration amplitude, was obtained by analyzing the tissue surface during vibration. The axial direction velocity distribution in the cross-sectional images of the vibrating vocal folds was obtained with the Doppler OCT. The quantitative transverse direction velocity distribution in the cross-sectional images was obtained with the Doppler variance images.
منابع مشابه
In vivo imaging of the rodent eye with swept source/Fourier domain OCT
Swept source/Fourier domain OCT is demonstrated for in vivo imaging of the rodent eye. Using commercial swept laser technology, we developed a prototype OCT imaging system for small animal ocular imaging operating in the 1050 nm wavelength range at an axial scan rate of 100 kHz with ~6 µm axial resolution. The high imaging speed enables volumetric imaging with high axial scan densities, measuri...
متن کاملTotal retinal blood flow measurement with ultrahigh speed swept source/Fourier domain OCT
Doppler OCT provides depth-resolved information on flow in biological tissues. In this article, we demonstrate ultrahigh speed swept source/Fourier domain OCT for visualization and quantitative assessment of retinal blood flow. Using swept laser technology, the system operated in the 1050-nm wavelength range at a high axial scan rate of 200 kHz. The rapid imaging speed not only enables volumetr...
متن کاملRetinal blood flow measurement with ultrahigh-speed swept-source / Fourier domain optical coherence tomography
Doppler OCT is a functional extension of OCT that provides information on flow in biological tissues. We present a novel approach for total retinal blood flow assessment using ultrahigh speed Doppler OCT. A swept source / Fourier domain OCT system at 1050 nm was used for 3D imaging of the human retina. The high axial scan rate of 200 kHz allowed measuring the high flow velocities in the central...
متن کاملUltrahigh speed 1050nm swept source/Fourier domain OCT retinal and anterior segment imaging at 100,000 to 400,000 axial scans per second.
We demonstrate ultrahigh speed swept source/Fourier domain ophthalmic OCT imaging using a short cavity swept laser at 100,000 - 400,000 axial scan rates. Several design configurations illustrate tradeoffs in imaging speed, sensitivity, axial resolution, and imaging depth. Variable rate A/D optical clocking is used to acquire linear-in-k OCT fringe data at 100 kHz axial scan rate with 5.3 um axi...
متن کاملFourier domain mode-locked swept source at 1050 nm based on a tapered amplifier.
While swept source optical coherence tomography (OCT) in the 1050 nm range is promising for retinal imaging, there are certain challenges. Conventional semiconductor gain media have limited output power, and the performance of high-speed Fourier domain mode-locked (FDML) lasers suffers from chromatic dispersion in standard optical fiber. We developed a novel light source with a tapered amplifie...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 19 شماره
صفحات -
تاریخ انتشار 2011